跳到主要内容

目标跟踪

前言

目标跟踪用于追踪图像中感兴趣的物体,常见的应用有自动跟随拍照。

实验目的

采集图像中感兴趣物体特征,然后追踪该物体。

实验讲解

本实验通过CanMV K230 AI视觉框架开发,详细说明参考 AI视觉开发框架 章节内容,这里不再重复。例程用到的模型已经存放在CanMV K230的文件系统,无需额外拷贝。

具体编程思路如下:

参考代码

'''
实验名称:目标跟踪
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
'''

from libs.PipeLine import PipeLine, ScopedTiming
from libs.AIBase import AIBase
from libs.AI2D import Ai2d
from random import randint
import os
import ujson
from media.media import *
from time import *
import nncase_runtime as nn
import ulab.numpy as np
import time
import image
import aidemo
import random
import gc
import sys

# 自定义跟踪模版任务类
class TrackCropApp(AIBase):
def __init__(self,kmodel_path,model_input_size,ratio_src_crop,center_xy_wh,rgb888p_size=[1280,720],display_size=[1920,1080],debug_mode=0):
super().__init__(kmodel_path,model_input_size,rgb888p_size,debug_mode)
# kmodel路径
self.kmodel_path=kmodel_path
# 跟踪模板输入分辨率
self.model_input_size=model_input_size
# sensor给到AI的图像分辨率,宽16字节对齐
self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
# 视频输出VO分辨率,宽16字节对齐
self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
# debug模式
self.debug_mode=debug_mode
# 跟踪框宽、高调整系数
self.CONTEXT_AMOUNT = 0.5
#src模型和crop模型输入比值
self.ratio_src_crop = ratio_src_crop
self.center_xy_wh=center_xy_wh
# padding和crop参数
self.pad_crop_params=[]
# 注意:ai2d设置多个预处理时执行的顺序为:crop->shift->resize/affine->pad,如果不符合该顺序,需要配置多个ai2d对象;
# 如下模型预处理要先做resize+padding再做resize+crop,因此要配置两个Ai2d对象
self.ai2d_pad=Ai2d(debug_mode)
self.ai2d_pad.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)
self.ai2d_crop=Ai2d(debug_mode)
self.ai2d_crop.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)
self.need_pad=False

# 配置预处理操作,这里使用了crop、pad和resize,Ai2d支持crop/shift/pad/resize/affine,具体代码请打开/sdcard/libs/AI2D.py查看
def config_preprocess(self,input_image_size=None):
with ScopedTiming("set preprocess config",self.debug_mode > 0):
# 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,可以通过设置input_image_size自行修改输入尺寸
ai2d_input_size = input_image_size if input_image_size else self.rgb888p_size
# 计算padding参数并应用pad操作,以确保输入图像尺寸与模型输入尺寸匹配
self.pad_crop_params= self.get_padding_crop_param()
# 如果需要padding,配置padding部分,否则只走crop
if (self.pad_crop_params[0] != 0 or self.pad_crop_params[1] != 0 or self.pad_crop_params[2] != 0 or self.pad_crop_params[3] != 0):
self.need_pad=True
self.ai2d_pad.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d_pad.pad([0, 0, 0, 0, self.pad_crop_params[0], self.pad_crop_params[1], self.pad_crop_params[2], self.pad_crop_params[3]], 0, [114, 114, 114])
output_size=[self.rgb888p_size[0]+self.pad_crop_params[2]+self.pad_crop_params[3],self.rgb888p_size[1]+self.pad_crop_params[0]+self.pad_crop_params[1]]
self.ai2d_pad.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,output_size[1],output_size[0]])

self.ai2d_crop.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d_crop.crop(int(self.pad_crop_params[4]),int(self.pad_crop_params[6]),int(self.pad_crop_params[5]-self.pad_crop_params[4]+1),int(self.pad_crop_params[7]-self.pad_crop_params[6]+1))
self.ai2d_crop.build([1,3,output_size[1],output_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])
else:
self.need_pad=False
self.ai2d_crop.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d_crop.crop(int(self.center_xy_wh[0]-self.pad_crop_params[8]/2.0),int(self.center_xy_wh[1]-self.pad_crop_params[8]/2.0),int(self.pad_crop_params[8]),int(self.pad_crop_params[8]))
self.ai2d_crop.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])

# 重写预处理函数preprocess,因为该部分不是单纯的走一个ai2d做预处理,所以该函数需要重写
def preprocess(self,input_np):
if self.need_pad:
pad_output=self.ai2d_pad.run(input_np).to_numpy()
return [self.ai2d_crop.run(pad_output)]
else:
return [self.ai2d_crop.run(input_np)]

# 自定义后处理,results是模型输出array的列表
def postprocess(self,results):
with ScopedTiming("postprocess",self.debug_mode > 0):
return results[0]

# 计算padding和crop参数
def get_padding_crop_param(self):
s_z = round(np.sqrt((self.center_xy_wh[2] + self.CONTEXT_AMOUNT * (self.center_xy_wh[2] + self.center_xy_wh[3])) * (self.center_xy_wh[3] + self.CONTEXT_AMOUNT * (self.center_xy_wh[2] + self.center_xy_wh[3]))))
c = (s_z + 1) / 2
context_xmin = np.floor(self.center_xy_wh[0] - c + 0.5)
context_xmax = int(context_xmin + s_z - 1)
context_ymin = np.floor(self.center_xy_wh[1] - c + 0.5)
context_ymax = int(context_ymin + s_z - 1)
left_pad = int(max(0, -context_xmin))
top_pad = int(max(0, -context_ymin))
right_pad = int(max(0, int(context_xmax - self.rgb888p_size[0] + 1)))
bottom_pad = int(max(0, int(context_ymax - self.rgb888p_size[1] + 1)))
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
return [top_pad,bottom_pad,left_pad,right_pad,context_xmin,context_xmax,context_ymin,context_ymax,s_z]

#重写deinit
def deinit(self):
with ScopedTiming("deinit",self.debug_mode > 0):
del self.ai2d_pad
del self.ai2d_crop
super().deinit()

# 自定义跟踪实时任务类
class TrackSrcApp(AIBase):
def __init__(self,kmodel_path,model_input_size,ratio_src_crop,rgb888p_size=[1280,720],display_size=[1920,1080],debug_mode=0):
super().__init__(kmodel_path,model_input_size,rgb888p_size,debug_mode)
# kmodel路径
self.kmodel_path=kmodel_path
# 检测模型输入分辨率
self.model_input_size=model_input_size
# sensor给到AI的图像分辨率,宽16字节对齐
self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
# 视频输出VO分辨率,宽16字节对齐
self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
# padding和crop参数列表
self.pad_crop_params=[]
# 跟踪框宽、高调整系数
self.CONTEXT_AMOUNT = 0.5
# src和crop模型的输入尺寸比例
self.ratio_src_crop = ratio_src_crop
# debug模式
self.debug_mode=debug_mode
# 注意:ai2d设置多个预处理时执行的顺序为:crop->shift->resize/affine->pad,如果不符合该顺序,需要配置多个ai2d对象;
# 如下模型预处理要先做resize+padding再做resize+crop,因此要配置两个Ai2d对象
self.ai2d_pad=Ai2d(debug_mode)
self.ai2d_pad.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)
self.ai2d_crop=Ai2d(debug_mode)
self.ai2d_crop.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)
self.need_pad=False

# 配置预处理操作,这里使用了crop、pad和resize,Ai2d支持crop/shift/pad/resize/affine,具体代码请打开/sdcard/libs/AI2D.py查看
def config_preprocess(self,center_xy_wh,input_image_size=None):
with ScopedTiming("set preprocess config",self.debug_mode > 0):
# 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,可以通过设置input_image_size自行修改输入尺寸
ai2d_input_size=input_image_size if input_image_size else self.rgb888p_size
# 计算padding参数并应用pad操作,以确保输入图像尺寸与模型输入尺寸匹配
self.pad_crop_params= self.get_padding_crop_param(center_xy_wh)
# 如果需要padding,配置padding部分,否则只走crop
if (self.pad_crop_params[0] != 0 or self.pad_crop_params[1] != 0 or self.pad_crop_params[2] != 0 or self.pad_crop_params[3] != 0):
self.need_pad=True
self.ai2d_pad.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d_pad.pad([0, 0, 0, 0, self.pad_crop_params[0], self.pad_crop_params[1], self.pad_crop_params[2], self.pad_crop_params[3]], 0, [114, 114, 114])
output_size=[self.rgb888p_size[0]+self.pad_crop_params[2]+self.pad_crop_params[3],self.rgb888p_size[1]+self.pad_crop_params[0]+self.pad_crop_params[1]]

self.ai2d_pad.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,output_size[1],output_size[0]])
self.ai2d_crop.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d_crop.crop(int(self.pad_crop_params[4]),int(self.pad_crop_params[6]),int(self.pad_crop_params[5]-self.pad_crop_params[4]+1),int(self.pad_crop_params[7]-self.pad_crop_params[6]+1))
self.ai2d_crop.build([1,3,output_size[1],output_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])
else:
self.need_pad=False
self.ai2d_crop.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
self.ai2d_crop.crop(int(center_xy_wh[0]-self.pad_crop_params[8]/2.0),int(center_xy_wh[1]-self.pad_crop_params[8]/2.0),int(self.pad_crop_params[8]),int(self.pad_crop_params[8]))
self.ai2d_crop.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])

# 重写预处理函数preprocess,因为该部分不是单纯的走一个ai2d做预处理,所以该函数需要重写
def preprocess(self,input_np):
with ScopedTiming("preprocess",self.debug_mode>0):
if self.need_pad:
pad_output=self.ai2d_pad.run(input_np).to_numpy()
return [self.ai2d_crop.run(pad_output)]
else:
return [self.ai2d_crop.run(input_np)]

# 自定义后处理,results是模型输出array的列表
def postprocess(self,results):
with ScopedTiming("postprocess",self.debug_mode > 0):
return results[0]

# 计算padding和crop参数
def get_padding_crop_param(self,center_xy_wh):
s_z = round(np.sqrt((center_xy_wh[2] + self.CONTEXT_AMOUNT * (center_xy_wh[2] + center_xy_wh[3])) * (center_xy_wh[3] + self.CONTEXT_AMOUNT * (center_xy_wh[2] + center_xy_wh[3])))) * self.ratio_src_crop
c = (s_z + 1) / 2
context_xmin = np.floor(center_xy_wh[0] - c + 0.5)
context_xmax = int(context_xmin + s_z - 1)
context_ymin = np.floor(center_xy_wh[1] - c + 0.5)
context_ymax = int(context_ymin + s_z - 1)
left_pad = int(max(0, -context_xmin))
top_pad = int(max(0, -context_ymin))
right_pad = int(max(0, int(context_xmax - self.rgb888p_size[0] + 1)))
bottom_pad = int(max(0, int(context_ymax - self.rgb888p_size[1] + 1)))
context_xmin = context_xmin + left_pad
context_xmax = context_xmax + left_pad
context_ymin = context_ymin + top_pad
context_ymax = context_ymax + top_pad
return [top_pad,bottom_pad,left_pad,right_pad,context_xmin,context_xmax,context_ymin,context_ymax,s_z]

# 重写deinit
def deinit(self):
with ScopedTiming("deinit",self.debug_mode > 0):
del self.ai2d_pad
del self.ai2d_crop
super().deinit()


class TrackerApp(AIBase):
def __init__(self,kmodel_path,crop_input_size,thresh,rgb888p_size=[1280,720],display_size=[1920,1080],debug_mode=0):
super().__init__(kmodel_path,rgb888p_size,debug_mode)
# kmodel路径
self.kmodel_path=kmodel_path
# crop模型的输入尺寸
self.crop_input_size=crop_input_size
# 跟踪框阈值
self.thresh=thresh
# 跟踪框宽、高调整系数
self.CONTEXT_AMOUNT = 0.5
# sensor给到AI的图像分辨率,宽16字节对齐
self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
# 视频输出VO分辨率,宽16字节对齐
self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
# debug模式
self.debug_mode=debug_mode
self.ai2d=Ai2d(debug_mode)
self.ai2d.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)

def config_preprocess(self,input_image_size=None):
with ScopedTiming("set preprocess config",self.debug_mode > 0):
pass

# 重写run函数,因为没有预处理过程,所以原来run操作中包含的preprocess->inference->postprocess不合适,这里只包含inference->postprocess
def run(self,input_np_1,input_np_2,center_xy_wh):
input_tensors=[]
input_tensors.append(nn.from_numpy(input_np_1))
input_tensors.append(nn.from_numpy(input_np_2))
results=self.inference(input_tensors)
return self.postprocess(results,center_xy_wh)


# 自定义后处理,results是模型输出array的列表,这里使用了aidemo的nanotracker_postprocess列表
def postprocess(self,results,center_xy_wh):
with ScopedTiming("postprocess",self.debug_mode > 0):
det = aidemo.nanotracker_postprocess(results[0],results[1],[self.rgb888p_size[1],self.rgb888p_size[0]],self.thresh,center_xy_wh,self.crop_input_size[0],self.CONTEXT_AMOUNT)
return det

class NanoTracker:
def __init__(self,track_crop_kmodel,track_src_kmodel,tracker_kmodel,crop_input_size,src_input_size,threshold=0.25,rgb888p_size=[1280,720],display_size=[1920,1080],debug_mode=0):
# 跟踪模版模型路径
self.track_crop_kmodel=track_crop_kmodel
# 跟踪实时模型路径
self.track_src_kmodel=track_src_kmodel
# 跟踪模型路径
self.tracker_kmodel=tracker_kmodel
# 跟踪模版模型输入分辨率
self.crop_input_size=crop_input_size
# 跟踪实时模型输入分辨率
self.src_input_size=src_input_size
self.threshold=threshold

self.CONTEXT_AMOUNT=0.5 # 跟踪框宽、高调整系数
self.ratio_src_crop = 0.0 # src模型和crop模型输入比值
self.track_x1 = float(600) # 起始跟踪目标框左上角点x
self.track_y1 = float(300) # 起始跟踪目标框左上角点y
self.track_w = float(100) # 起始跟踪目标框w
self.track_h = float(100) # 起始跟踪目标框h
self.draw_mean=[] # 初始目标框位置列表
self.center_xy_wh = []
self.track_boxes = []
self.center_xy_wh_tmp = []
self.track_boxes_tmp=[]
self.crop_output=None
self.src_output=None
# 跟踪框初始化时间
self.seconds = 8
self.endtime = time.time() + self.seconds
self.enter_init = True

# sensor给到AI的图像分辨率,宽16字节对齐
self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
# 视频输出VO分辨率,宽16字节对齐
self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
self.init_param()

self.track_crop=TrackCropApp(self.track_crop_kmodel,model_input_size=self.crop_input_size,ratio_src_crop=self.ratio_src_crop,center_xy_wh=self.center_xy_wh,rgb888p_size=self.rgb888p_size,display_size=self.display_size,debug_mode=0)
self.track_src=TrackSrcApp(self.track_src_kmodel,model_input_size=self.src_input_size,ratio_src_crop=self.ratio_src_crop,rgb888p_size=self.rgb888p_size,display_size=self.display_size,debug_mode=0)
self.tracker=TrackerApp(self.tracker_kmodel,crop_input_size=self.crop_input_size,thresh=self.threshold,rgb888p_size=self.rgb888p_size,display_size=self.display_size)
self.track_crop.config_preprocess()

# run函数
def run(self,input_np):
# 在初始化时间内,crop模版部分的到跟踪模版特征,否则,对当前帧进行src推理得到特征并使用tracker对两个特征推理,得到跟踪框的坐标
nowtime = time.time()
if (self.enter_init and nowtime <= self.endtime):
print("倒计时: " + str(self.endtime - nowtime) + " 秒")
self.crop_output=self.track_crop.run(input_np)
time.sleep(1)
return self.draw_mean
else:
self.track_src.config_preprocess(self.center_xy_wh)
self.src_output=self.track_src.run(input_np)
det=self.tracker.run(self.crop_output,self.src_output,self.center_xy_wh)
return det

# 绘制效果,绘制跟踪框位置
def draw_result(self,pl,box):
pl.osd_img.clear()
if self.enter_init:
pl.osd_img.draw_rectangle(box[0],box[1],box[2],box[3],color=(255, 0, 255, 0),thickness = 4)
if (time.time() > self.endtime):
self.enter_init = False
else:
self.track_boxes = box[0]
self.center_xy_wh = box[1]
track_bool = True
if (len(self.track_boxes) != 0):
track_bool = self.track_boxes[0] > 10 and self.track_boxes[1] > 10 and self.track_boxes[0] + self.track_boxes[2] < self.rgb888p_size[0] - 10 and self.track_boxes[1] + self.track_boxes[3] < self.rgb888p_size[1] - 10
else:
track_bool = False

if (len(self.center_xy_wh) != 0):
track_bool = track_bool and self.center_xy_wh[2] * self.center_xy_wh[3] < 40000
else:
track_bool = False
if (track_bool):
self.center_xy_wh_tmp = self.center_xy_wh
self.track_boxes_tmp = self.track_boxes
x1 = int(float(self.track_boxes[0]) * self.display_size[0] / self.rgb888p_size[0])
y1 = int(float(self.track_boxes[1]) * self.display_size[1] / self.rgb888p_size[1])
w = int(float(self.track_boxes[2]) * self.display_size[0] / self.rgb888p_size[0])
h = int(float(self.track_boxes[3]) * self.display_size[1] / self.rgb888p_size[1])
pl.osd_img.draw_rectangle(x1, y1, w, h, color=(255, 255, 0, 0),thickness = 4)
else:
self.center_xy_wh = self.center_xy_wh_tmp
self.track_boxes = self.track_boxes_tmp
x1 = int(float(self.track_boxes[0]) * self.display_size[0] / self.rgb888p_size[0])
y1 = int(float(self.track_boxes[1]) * self.display_size[1] / self.rgb888p_size[1])
w = int(float(self.track_boxes[2]) * self.display_size[0] / self.rgb888p_size[0])
h = int(float(self.track_boxes[3]) * self.display_size[1] / self.rgb888p_size[1])
pl.osd_img.draw_rectangle(x1, y1, w, h, color=(255, 255, 0, 0),thickness = 4)
pl.osd_img.draw_string_advanced( x1 , y1-50,32, "请远离摄像头,保持跟踪物体大小基本一致!" , color=(255, 255 ,0 , 0))
pl.osd_img.draw_string_advanced( x1 , y1-100,32, "请靠近中心!" , color=(255, 255 ,0 , 0))

# crop参数初始化
def init_param(self):
self.ratio_src_crop = float(self.src_input_size[0])/float(self.crop_input_size[0])
print(self.ratio_src_crop)
if (self.track_x1 < 50 or self.track_y1 < 50 or self.track_x1+self.track_w >= self.rgb888p_size[0]-50 or self.track_y1+self.track_h >= self.rgb888p_size[1]-50):
print("**剪切范围超出图像范围**")
else:
track_mean_x = self.track_x1 + self.track_w / 2.0
track_mean_y = self.track_y1 + self.track_h / 2.0
draw_mean_w = int(self.track_w / self.rgb888p_size[0] * self.display_size[0])
draw_mean_h = int(self.track_h / self.rgb888p_size[1] * self.display_size[1])
draw_mean_x = int(track_mean_x / self.rgb888p_size[0] * self.display_size[0] - draw_mean_w / 2.0)
draw_mean_y = int(track_mean_y / self.rgb888p_size[1] * self.display_size[1] - draw_mean_h / 2.0)
self.draw_mean=[draw_mean_x,draw_mean_y,draw_mean_w,draw_mean_h]
self.center_xy_wh = [track_mean_x,track_mean_y,self.track_w,self.track_h]
self.center_xy_wh_tmp=[track_mean_x,track_mean_y,self.track_w,self.track_h]

self.track_boxes = [self.track_x1,self.track_y1,self.track_w,self.track_h,1]
self.track_boxes_tmp=np.array([self.track_x1,self.track_y1,self.track_w,self.track_h,1])


if __name__=="__main__":
# 显示模式,默认"hdmi",可以选择"hdmi"和"lcd"
display_mode="lcd"
if display_mode=="hdmi":
display_size=[1920,1080]
else:
display_size=[800,480]
# 跟踪模板模型路径
track_crop_kmodel_path="/sdcard/examples/kmodel/cropped_test127.kmodel"
# 跟踪实时模型路径
track_src_kmodel_path="/sdcard/examples/kmodel/nanotrack_backbone_sim.kmodel"
# 跟踪模型路径
tracker_kmodel_path="/sdcard/examples/kmodel/nanotracker_head_calib_k230.kmodel"
# 其他参数
rgb888p_size=[1280,720]
track_crop_input_size=[127,127]
track_src_input_size=[255,255]
threshold=0.1

# 初始化PipeLine,只关注传给AI的图像分辨率,显示的分辨率
pl=PipeLine(rgb888p_size=rgb888p_size,display_size=display_size,display_mode=display_mode)
pl.create()
track=NanoTracker(track_crop_kmodel_path,track_src_kmodel_path,tracker_kmodel_path,crop_input_size=track_crop_input_size,src_input_size=track_src_input_size,threshold=threshold,rgb888p_size=rgb888p_size,display_size=display_size)

clock = time.clock()

while True:

clock.tick()

img=pl.get_frame() # 获取当前帧
output=track.run(img) # 推理当前帧
track.draw_result(pl,output) # 绘制当前帧推理结果
print(output) # 打印当前结果
pl.show_image() # 展示推理结果
gc.collect()

print(clock.fps()) #打印帧率

这里对关键代码进行讲解:

  • 主函数代码:

可以看到使用默认配置后只使用了4行代码便实现了获取当前帧图像、AI推理、绘制结果、显示结果 的识别流程。

代码中 output为检测结果。

    ...
while True:

clock.tick()

img=pl.get_frame() # 获取当前帧
output=track.run(img) # 推理当前帧
track.draw_result(pl,output) # 绘制当前帧推理结果
print(output) # 打印当前结果
pl.show_image() # 展示推理结果
gc.collect()

print(clock.fps()) #打印帧率
...

实验结果

在CanMV IDE中运行上述代码,代码开始运行后出现一个绿色矩形框,将要跟踪物体放在矩形框内。

原图:

tracker

这里演示追踪葡萄,将葡萄放进绿色矩形框。

tracker

等待矩形框变成红色后说明学习成功并开始追踪,这时候移动摄像头,始终能找到葡萄。

tracker