手掌检测
前言
检查画面中的手掌。
实验目的
检测摄像头拍摄到的画面中的手掌并画图指示。
实验讲解
本实验通过CanMV K230 AI视觉框架开发,详细说明参考 AI视觉开发框架 章节内容,这里不再重复。例程用到的模型已经存放在CanMV K230的文件系统,无需额外拷贝。
具体编程思路如下:
参考代码
'''
实验名称:手掌检测
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
'''
from libs.PipeLine import PipeLine, ScopedTiming
from libs.AIBase import AIBase
from libs.AI2D import Ai2d
import os
import ujson
from media.media import *
from time import *
import nncase_runtime as nn
import ulab.numpy as np
import time
import utime
import image
import random
import gc
import sys
import aicube
# 自定义手掌检测类,继承自AIBase基类
class HandDetectionApp(AIBase):
def __init__(self, kmodel_path, model_input_size, labels, anchors, confidence_threshold=0.2, nms_threshold=0.5, nms_option=False, strides=[8,16,32], rgb888p_size=[224,224], display_size=[1920,1080], debug_mode=0):
super().__init__(kmodel_path, model_input_size, rgb888p_size, debug_mode) # 调用基类的构造函数,初始化模型文件路径、模型输入分辨率、RGB图像分辨率和调试模式
self.kmodel_path = kmodel_path # 模型文件路径
self.model_input_size = model_input_size # 模型输入分辨率
self.labels = labels # 模型输出的类别标签列表
self.anchors = anchors # 用于目标检测的锚点尺寸列表
self.strides = strides # 特征下采样倍数
self.confidence_threshold = confidence_threshold # 置信度阈值,用于过滤低置信度的检测结果
self.nms_threshold = nms_threshold # NMS(非极大值抑制)阈值,用于去除重叠的检测框
self.nms_option = nms_option # NMS选项,可能影响NMS的具体实现
self.rgb888p_size = [ALIGN_UP(rgb888p_size[0], 16), rgb888p_size[1]] # sensor给到AI的图像分辨率,对齐到最近的16的倍数
self.display_size = [ALIGN_UP(display_size[0], 16), display_size[1]] # 显示分辨率,对齐到最近的16的倍数
self.debug_mode = debug_mode # 调试模式,用于输出调试信息
self.ai2d = Ai2d(debug_mode) # 实例化Ai2d类,用于实现模型预处理
# 设置Ai2d的输入输出格式和类型,这里使用NCHW格式,数据类型为uint8
self.ai2d.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT, nn.ai2d_format.NCHW_FMT, np.uint8, np.uint8)
# 配置预处理操作,这里使用了pad和resize
def config_preprocess(self, input_image_size=None):
with ScopedTiming("set preprocess config", self.debug_mode > 0): # 使用ScopedTiming装饰器来测量预处理配置的时间
# 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,可以通过设置input_image_size自行修改输入尺寸
ai2d_input_size = input_image_size if input_image_size else self.rgb888p_size
# 计算padding参数并应用pad操作,以确保输入图像尺寸与模型输入尺寸匹配
top, bottom, left, right = self.get_padding_param()
self.ai2d.pad([0, 0, 0, 0, top, bottom, left, right], 0, [0, 0, 0])
# 使用双线性插值进行resize操作,调整图像尺寸以符合模型输入要求
self.ai2d.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
# 构建预处理流程
self.ai2d.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])
# 自定义当前任务的后处理,用于处理模型输出结果
def postprocess(self, results):
with ScopedTiming("postprocess", self.debug_mode > 0): # 使用ScopedTiming装饰器来测量后处理的时间
# 使用aicube库的函数进行后处理,得到最终的检测结果
dets = aicube.anchorbasedet_post_process(results[0], results[1], results[2], self.model_input_size, self.rgb888p_size, self.strides, len(self.labels), self.confidence_threshold, self.nms_threshold, self.anchors, self.nms_option)
return dets
# 绘制检测结果到屏幕上
def draw_result(self, pl, dets):
with ScopedTiming("display_draw", self.debug_mode > 0): # 使用ScopedTiming装饰器来测量绘制结果的时间
if dets: # 如果存在检测结果
pl.osd_img.clear() # 清除屏幕上的旧内容
for det_box in dets: # 遍历每个检测框
# 根据模型输出计算检测框的像素坐标,并调整大小以适应显示分辨率
x1, y1, x2, y2 = det_box[2], det_box[3], det_box[4], det_box[5]
w = float(x2 - x1) * self.display_size[0] // self.rgb888p_size[0]
h = float(y2 - y1) * self.display_size[1] // self.rgb888p_size[1]
x1 = int(x1 * self.display_size[0] // self.rgb888p_size[0])
y1 = int(y1 * self.display_size[1] // self.rgb888p_size[1])
x2 = int(x2 * self.display_size[0] // self.rgb888p_size[0])
y2 = int(y2 * self.display_size[1] // self.rgb888p_size[1])
# 过滤掉太小或者位置不合理的检测框
if (h < (0.1 * self.display_size[0])):
continue
if (w < (0.25 * self.display_size[0]) and ((x1 < (0.03 * self.display_size[0])) or (x2 > (0.97 * self.display_size[0])))):
continue
if (w < (0.15 * self.display_size[0]) and ((x1 < (0.01 * self.display_size[0])) or (x2 > (0.99 * self.display_size[0])))):
continue
# 绘制矩形框和类别标签
pl.osd_img.draw_rectangle(x1, y1, int(w), int(h), color=(255, 0, 255, 0), thickness=2)
pl.osd_img.draw_string_advanced(x1, y1-50,32, " " + self.labels[det_box[0]] + " " + str(round(det_box[1], 2)), color=(255, 0, 255, 0))
else:
pl.osd_img.clear() # 如果没有检测结果,清空屏幕
# 计算padding参数,确保输入图像尺寸与模型输入尺寸匹配
def get_padding_param(self):
# 根据目标宽度和高度计算比例因子
dst_w = self.model_input_size[0]
dst_h = self.model_input_size[1]
input_width = self.rgb888p_size[0]
input_high = self.rgb888p_size[1]
ratio_w = dst_w / input_width
ratio_h = dst_h / input_high
# 选择较小的比例因子,以确保图像内容完整
if ratio_w < ratio_h:
ratio = ratio_w
else:
ratio = ratio_h
# 计算新的宽度和高度
new_w = int(ratio * input_width)
new_h = int(ratio * input_high)
# 计算宽度和高度的差值,并确定padding的位置
dw = (dst_w - new_w) / 2
dh = (dst_h - new_h) / 2
top = int(round(dh - 0.1))
bottom = int(round(dh + 0.1))
left = int(round(dw - 0.1))
right = int(round(dw + 0.1))
return top, bottom, left, right
if __name__=="__main__":
# 显示模式,默认"hdmi",可以选择"hdmi"和"lcd"
display_mode="lcd"
if display_mode=="hdmi":
display_size=[1920,1080]
else:
display_size=[800,480]
# 模型路径
kmodel_path="/sdcard/app/tests/kmodel/hand_det.kmodel"
# 其它参数设置
confidence_threshold = 0.2
nms_threshold = 0.5
rgb888p_size=[1920,1080]
labels = ["hand"]
anchors = [26,27, 53,52, 75,71, 80,99, 106,82, 99,134, 140,113, 161,172, 245,276] #anchor设置
# 初始化PipeLine
pl=PipeLine(rgb888p_size=rgb888p_size,display_size=display_size,display_mode=display_mode)
pl.create()
# 初始化自定义手掌检测实例
hand_det=HandDetectionApp(kmodel_path,model_input_size=[512,512],labels=labels,anchors=anchors,confidence_threshold=confidence_threshold,nms_threshold=nms_threshold,nms_option=False,strides=[8,16,32],rgb888p_size=rgb888p_size,display_size=display_size,debug_mode=0)
hand_det.config_preprocess()
clock = time.clock()
try:
while True:
os.exitpoint() # 检查是否有退出信号
clock.tick()
img=pl.get_frame() # 获取当前帧数据
res=hand_det.run(img) # 推理当前帧
hand_det.draw_result(pl,res) # 绘制结果到PipeLine的osd图像
print(res) # 打印结果
pl.show_image() # 显示当前的绘制结果
gc.collect() # 垃圾回收
print(clock.fps()) #打印帧率
except Exception as e:
sys.print_exception(e)
finally:
hand_det.deinit() # 反初始化
pl.destroy() # 销毁PipeLine实例
这里对关键代码进行讲解:
- 主函数代码:
可以看到使用默认配置后只使用了4行代码便实现了获取当前帧图像、AI推理、绘制结果、显示结果 的识别流程。
代码中det_boxes
变量为人脸检测结果, res
为识别结果。
...
while True:
os.exitpoint() # 检查是否有退出信号
clock.tick()
img=pl.get_frame() # 获取当前帧数据
res=hand_det.run(img) # 推理当前帧
hand_det.draw_result(pl,res) # 绘制结果到PipeLine的osd图像
print(res) # 打印结果
pl.show_image() # 显示当前的绘制结果
gc.collect() # 垃圾回收
print(clock.fps()) #打印帧率
...
实验结果
运行代码,将摄像头正对下图手掌。
原图:
识别结果: