边缘检测(彩色图)
实验讲解
边缘检测(彩色)用于识别彩色图像里的轮廓并画框标注。使用cv_lite库与前面 边缘检测 例程对比速度更快。

rgb888_find_edges对象
构造函数
img_out = image.Image(image_shape[1], image_shape[0], image.GRAYSCALE, alloc=image.ALLOC_REF, data=edge_np)
查找图像中指定的边缘。参数说明:
image_shape: 图像形状,list类型,顺序为[高,宽],如[480,640]img_np: 图像数据引用,ulab.numpy.ndarray类型threshold1: 低阈值,int类型threshold2: 高阈值,int类型
使用方法
以上函数返回edge_np值:边缘检测后的图像数据,ulab.numpy.ndarray类型,在此数据上创建image实例
更多用法请阅读 官方文档
代码编写流程如下:
参考代码
CanMV K230 + 3.5寸mipi屏
'''
实验名称:边缘检测
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
说明:通过修改lcd_width和lcd_height参数值选择3.5寸或2.4寸屏。
'''
# ============================================================
# MicroPython 基于 cv_lite 的 RGB888 边缘检测测试代码
# RGB888 Edge Detection Test using cv_lite extension
# ============================================================
import time, os, sys, gc
from machine import Pin
from media.sensor import * # 导入摄像头接口 / Camera interface
from media.display import * # 导入显示接口 / Display interface
from media.media import * # 导入媒体资源管理器 / Media manager
import _thread
import cv_lite # 导入 cv_lite 扩展模块 / cv_lite extension
import ulab.numpy as np # MicroPython 类 NumPy 库
#CanMV K230 - 3.5寸mipi屏分辨率定义
lcd_width = 800
lcd_height = 480
'''
#CanMV K230 mini - 2.4寸mipi屏分辨率定义
lcd_width = 640
lcd_height = 480
'''
# -------------------------------
# 图像尺寸设置 / Image resolution
# -------------------------------
image_shape = [480, 640] # 高 x 宽 / Height x Width
# -------------------------------
# 初始化摄像头(RGB888格式) / Initialize camera (RGB888 format)
# -------------------------------
sensor = Sensor(id=2, width=1280, height=960,fps=90)
sensor.reset()
sensor.set_framesize(width=image_shape[1], height=image_shape[0])
sensor.set_pixformat(Sensor.RGB888) # 设置 RGB888 像素格式 / Set RGB888 pixel format
# -------------------------------
# 初始化显示器(IDE虚拟输出) / Initialize display (IDE virtual output)
# -------------------------------
Display.init(Display.ST7701, width=lcd_width, height=lcd_height, to_ide=True, quality=50)
# -------------------------------
# 初始化媒体资源管理器 / Initialize media manager
# -------------------------------
MediaManager.init()
sensor.run()
# -------------------------------
# 启动帧率计时器 / Start FPS timer
# -------------------------------
clock = time.clock()
# -------------------------------
# 边缘检测参数 / Edge detection parameters (Canny thresholds)
# -------------------------------
threshold1 = 50 # Canny 边缘检测低阈值 / Lower threshold for Canny
threshold2 = 80 # Canny 边缘检测高阈值 / Higher threshold for Canny
# -------------------------------
# 主循环 / Main loop
# -------------------------------
while True:
clock.tick()
# 拍摄一帧图像 / Capture a frame
img = sensor.snapshot()
img_np = img.to_numpy_ref() # 获取 RGB888 ndarray 引用
# 调用 cv_lite 扩展的边缘检测函数,返回灰度边缘图 ndarray
edge_np = cv_lite.rgb888_find_edges(image_shape, img_np, threshold1, threshold2)
# 构造灰度图像对象用于显示
img_out = image.Image(image_shape[1], image_shape[0], image.GRAYSCALE, alloc=image.ALLOC_REF, data=edge_np)
img_out.draw_string_advanced(0, 0, 30, 'FPS: '+str("%.3f"%(clock.fps())), color = (255, 255, 255))
# 显示结果图像 / Show image with blobs
Display.show_image(img_out, x=round((lcd_width-sensor.width())/2),y=round((lcd_height-sensor.height())/2))
# 垃圾回收 / Garbage collect
gc.collect()
# 打印当前帧率 / Print FPS
print("edges:", clock.fps())
# -------------------------------
# 退出时释放资源 / Cleanup on exit
# -------------------------------
sensor.stop()
Display.deinit()
os.exitpoint(os.EXITPOINT_ENABLE_SLEEP)
time.sleep_ms(100)
MediaManager.deinit()
CanMV K230 mini + 2.4寸mipi屏
'''
实验名称:边缘检测
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
说明:通过修改lcd_width和lcd_height参数值选择3.5寸或2.4寸屏。
'''
# ============================================================
# MicroPython 基于 cv_lite 的 RGB888 边缘检测测试代码
# RGB888 Edge Detection Test using cv_lite extension
# ============================================================
import time, os, sys, gc
from machine import Pin
from media.sensor import * # 导入摄像头接口 / Camera interface
from media.display import * # 导入显示接口 / Display interface
from media.media import * # 导入媒体资源管理器 / Media manager
import _thread
import cv_lite # 导入 cv_lite 扩展模块 / cv_lite extension
import ulab.numpy as np # MicroPython 类 NumPy 库
'''
#CanMV K230 - 3.5寸mipi屏分辨率定义
lcd_width = 800
lcd_height = 480
'''
#CanMV K230 mini - 2.4寸mipi屏分辨率定义
lcd_width = 640
lcd_height = 480
# -------------------------------
# 图像尺寸设置 / Image resolution
# -------------------------------
image_shape = [480, 640] # 高 x 宽 / Height x Width
# -------------------------------
# 初始化摄像头(RGB888格式) / Initialize camera (RGB888 format)
# -------------------------------
sensor = Sensor(id=2, width=1280, height=960,fps=90)
sensor.reset()
sensor.set_framesize(width=image_shape[1], height=image_shape[0])
sensor.set_pixformat(Sensor.RGB888) # 设置 RGB888 像素格式 / Set RGB888 pixel format
# -------------------------------
# 初始化显示器(IDE虚拟输出) / Initialize display (IDE virtual output)
# -------------------------------
Display.init(Display.ST7701, width=lcd_width, height=lcd_height, to_ide=True, quality=50)
# -------------------------------
# 初始化媒体资源管理器 / Initialize media manager
# -------------------------------
MediaManager.init()
sensor.run()
# -------------------------------
# 启动帧率计时器 / Start FPS timer
# -------------------------------
clock = time.clock()
# -------------------------------
# 边缘检测参数 / Edge detection parameters (Canny thresholds)
# -------------------------------
threshold1 = 50 # Canny 边缘检测低阈值 / Lower threshold for Canny
threshold2 = 80 # Canny 边缘检测高阈值 / Higher threshold for Canny
# -------------------------------
# 主循环 / Main loop
# -------------------------------
while True:
clock.tick()
# 拍摄一帧图像 / Capture a frame
img = sensor.snapshot()
img_np = img.to_numpy_ref() # 获取 RGB888 ndarray 引用
# 调用 cv_lite 扩展的边缘检测函数,返回灰度边缘图 ndarray
edge_np = cv_lite.rgb888_find_edges(image_shape, img_np, threshold1, threshold2)
# 构造灰度图像对象用于显示
img_out = image.Image(image_shape[1], image_shape[0], image.GRAYSCALE, alloc=image.ALLOC_REF, data=edge_np)
img_out.draw_string_advanced(0, 0, 30, 'FPS: '+str("%.3f"%(clock.fps())), color = (255, 255, 255))
# 显示结果图像 / Show image with blobs
Display.show_image(img_out, x=round((lcd_width-sensor.width())/2),y=round((lcd_height-sensor.height())/2))
# 垃圾回收 / Garbage collect
gc.collect()
# 打印当前帧率 / Print FPS
print("edges:", clock.fps())
# -------------------------------
# 退出时释放资源 / Cleanup on exit
# -------------------------------
sensor.stop()
Display.deinit()
os.exitpoint(os.EXITPOINT_ENABLE_SLEEP)
time.sleep_ms(100)
MediaManager.deinit()
实验结果
在CanMV IDE中运行代码,用户可自行调整参数,过滤一些干扰,识别结果如下:
边缘识别:
原图:

实验结果:
